The Effect of Raw Mesocarp Fibre Inclusion on the Durability Properties of Lightweight Foamed Concrete
pdf

Keywords

Bending
Foamed concrete
Mesocarp fibre
Porosity
Water absorption

Abstract

Researchers around the globe have recognised the potential need for lightweight, reliable, easy to use, affordable, and even more sustainable building materials. One of the vanguard proposals has been the procurement, development and use of alternative, non-conventional local building materials, which includes the possibility of utilising lightweight foamed concrete (LFC). LFC is excellent under compression but poor in tensile stress, as it produces multiple microcracks. LFC cannot withstand the tensile stress induced by applied forces without additional reinforcing elements. This research was conducted to examine the potential utilisation of oil palm mesocarp fibre-reinforced (OPMF) LFC in terms of its durability. Two densities, 600 kg/m3 and 1,200 kg/m3, were cast and tested with five different percentages of OPMF, which were 0.00% (control), 0.15%, 0.30%, 0.45% and 0.60%. The parameters evaluated were water absorption, porosity, drying shrinkage, ultrasonic pulse velocity. The results revealed that the inclusion of OPMF in LFC helps to minimise water absorption and the porosity of LFC. Moreover, the inclusion of OPMF also improves the drying shrinkage and ultrasonic pulse velocity of LFC.

https://doi.org/10.29037/ajstd.685
pdf

References

Amran YHM. 2020. Influence of structural parameters on the properties of fibred-foamed concrete. Innovative Infrastruct Solutions. 5(1):16. doi:10.1007/s41062-020-0262-8.

Amran YHM, Farzadnia N, Abang Ali AA. 2015. Properties and applications of foamed concrete: a review. Constr Build Mater. 101:990–1005. doi:10.1016/j.conbuildmat.2015.10.112.

Ardanuy M, Claramunt J, Toledo Filho RD. 2015. Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater. 79:115–128. doi:10.1016/j.conbuildmat.2015.01.035.

ASTM C878/C878M-14a. 2014. Standard test method for restrained expansion of shrinkage-compensating concrete. West Conshohocken: ASTM International. doi:10.1520/C0878_C0878M-14A.

Awang H, Ahmad MH. 2014. Durability properties of foamed concrete with fiber inclusion. Int J Civ Environ Eng. 8(3):273–276. doi:10.5281/zenodo.1091440.

Awang H, Ahmad MH, Al-Mulali MZ. 2015. Influence of kenaf and polypropylene fibres on mechanical and durability properties of fibre reinforced lightweight foamed concrete. J Eng Sci Technol. 10(4):496–508.

Balasubramanian M, Chandrashekaran J, Selvan SS. 2015. Experimental investigation of natural fiber reinforced concrete in construction industry. Int Res J Eng Technol. 02(01):179–182.

Bing C, Zhen W, Ning L. 2012. Experimental research on properties of high-strength foamed concrete. J Mater Civil Eng. 24(1):113–118. doi:10.1061/(ASCE)MT.1943-5533.0000353.

British Standards Institution. 1983. BS 1881-122 testing concrete. Method for determination of water absorption. London: British Standards Institution.

British Standards Institution. 1996. BS 12: specification for Portland cement. London: British Standards Institution.

British Standards Institution. 2004. BS EN 12504-4:2004 testing concrete. Determination of ultrasonic pulse velocity. London: British Standards Institute.

Castillo-Lara JF, Flores-Johnson EA, Valadez-Gonzalez A, Herrera-Franco PJ, Carrillo JG, Gonzalez-Chi PI, Li QM. 2020. Mechanical properties of natural fiber reinforced foamed concrete. Materials. 13(14):3060. doi:10.3390/ma13143060.

Claramunt J, Fernández-Carrasco LJ, Ventura H, Ardanuy M. 2016. Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Constr Build Mater. 115:230–239. doi:10.1016/j.conbuildmat.2016.04.044.

Combrinck R, Boshoff WP. 2013. Typical plastic shrinkage cracking behaviour of concrete. Mag Concrete Res. 65(8):486–493.

Elsaid A, Dawood M, Seracino R, Bobko C. 2011. Mechanical properties of kenaf fiber reinforced concrete. Constr Build Mater. 25(4):1991–2001. doi:10.1016/j.conbuildmat.2010.11.052.

Falliano D, De Domenico D, Ricciardi G, Gugliandolo E. 2019. Compressive and flexural strength of fiber-reinforced foamed concrete: effect of fiber content, curing conditions and dry density. Constr Build Mater. 198:479–493. doi:10.1016/j.conbuildmat.2018.11.197.

Grégoire M, Ouagne P, Barthod-Malat B, Evon P, Labonne L, Placet V. 2019. Extraction of linseed flax fibres for technical textiles: influence of pre-treatment parameters on the fibre yield, the mechanical properties and the mechanical properties. Rev Compos Mater Av. 29(5):293–298. doi:10.18280/rcma.290503.

Hamad AJ. 2014. Materials, production, properties and application of aerated lightweight concrete: a review. Int J Mater Sci Eng. 2(2):152–157. doi:10.12720/ijmse.2.2.152-157.

Hindy EE, Miao B, Chaallal O, Aitcin PC. 1994. Drying shrinkage of ready-mixed high-performance concrete. Mater J. 91(3):300–305. doi:10.14359/4292.

Jalal M, Tanveer A, Jagdeesh K, Ahmed F. 2017. Foam concrete. Int J Civ Eng Res. 8(1):1–14.

Jhatial AA, Inn GW, Mohamad N, Alengaram UJ, Mo KH, Abdullah R. 2017. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. IOP Conf Ser: Mater Sci Eng. 271:012058. doi:10.1088/1757-899X/271/1/012058.

Kamaruddin S, Goh WI, Jhatial AA, Lakhiar MT. 2018. Chemical and fresh state properties of foamed concrete incorporating palm oil fuel ash and eggshell ash as cement replacement. Int J Eng Technol. 7(4.30):350. doi:10.14419/ijet.v7i4.30.22307.

Kearsley EP, Wainwright PJ. 2001. Porosity and permeability of foamed concrete. Cem Concr Res. 31(5):805–812.

Kim YJ, Hu J, Lee SJ, You BH. 2010. Mechanical properties of fiber reinforced lightweight concrete containing surfactant. Adv Civ Eng. 2010:e549642. doi:10.1155/2010/549642.

Lau Kt, Hung Py, Zhu MH, Hui D. 2018. Properties of natural fibre composites for structural engineering applications. Composites Part B. 136:222–233. doi:10.1016/j.compositesb.2017.10.038.

Mohamad N, Iman MA, Mydin MAO, Samad AAA, Rosli JA, Noorwirdawati A. 2018. Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre. IOP Conf Ser: Earth Environ Sci. 140:012140. doi:10.1088/1755-1315/140/1/012140.

Moses OT, Samson D, Waila OM. 2015. Compressive strength characteristics of kenaf fibre reinforced cement mortar. Adv Mater. 4(1):6. doi:10.11648/j.am.20150401.12.

Musa M, Mydin MAO, Ghani ANA. 2019. Thermal properties of foamed concrete with addition of empty fruit bunch (EFB) fiber. Int J Innovative Technol Explor Eng. 8(10):4662–4670. doi:10.35940/ijitee.J1081.0881019.

Mydin MAO. 2016. Evaluation of splitting tensile strength in plain and fibre-reinforced foamed mortar. Jurnal Teknologi. 78(5):413–419. doi:10.11113/jt.v78.8346.

Mydin MAO, Phius AF, Sani NM, Tawil NM. 2014. Potential of green construction in Malaysia: industrialised building system (IBS) vs traditional construction method. E3S Web Conf. 3:01009. doi:10.1051/e3sconf/20140301009.

Mydin MAO, Zamzani NM. 2018. Coconut fiber strengthen high performance concrete: Young’s modulus, ultrasonic pulse velocity and ductility properties. Int J Eng Technol. 7(2.23):284–287. doi:10.14419/ijet.v7i2.23.11933.

Mydin MAO, Zamzani NM, Ghani ANA. 2018. Effect of alkali-activated sodium hydroxide treatment of coconut fiber on mechanical properties of lightweight foamed concrete. AIP Conf Proc. 2016(1):020108. doi:10.1063/1.5055510.

Nambiar E, Ramamurthy K. 2007. Sorption characteristics of foam concrete. Cem Concr Res. 37:1341–1347. doi:10.1016/j.cemconres.2007.05.010.

Rahman MR, Huque MM, Islam MN, Hasan M. 2008. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A. 39(11):1739–1747. doi:10.1016/j.compositesa.2008.08.002.

Raj A, Sathyan D, Mini KM. 2019. Physical and functional characteristics of foam concrete: a review. Constr Build Mater. 221:787–799. doi:10.1016/j.conbuildmat.2019.06.052.

Raj B, Sathyan D, Madhavan MK, Raj A. 2020. Mechanical and durability properties of hybrid fiber reinforced foam concrete. Constr Build Mater. 245:118373. doi:10.1016/j.conbuildmat.2020.118373.

Ramli M, Kwan WH, Abas NF. 2013. Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Constr Build Mater. 38:554–566. doi:10.1016/j.conbuildmat.2012.09.002.

Risdanareni P, Sulton M, Nastiti SF. 2016. Lightweight foamed concrete for prefabricated house. AIP Conf Proc. 1778(1):030029. doi:10.1063/1.4965763.

Serri E, Suleiman MZ, Mydin MAO. 2014. The effects of oil palm shell aggregate shape on the thermal properties and density of concrete. Adv Mat Res. 935:172–175. doi:10.4028/www.scientific.net/amr.935.172.

Suhaili SS, Mydin MAO. 2020. Potential of stalk and spikelets of empty fruit bunch fibres on mechanical properties of lightweight foamed concrete. Int J Sci Technol Res. 9(3):3199–3204.

Yerramala A, Ramachandrudu C. 2016. Properties of foamed concrete with sisal fibre. Paper presented at: 9th International Concrete Conference 2016, Environment, Efficiency and Economic Challenges for Concrete; Dundee, Scotland. p. 656–669.

Yusoff MZM, Salit MS, Ismail N, Wirawan R. 2010. Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malays. 39(1):87–92.

Zamzani NM. 2019. Characterization of durability and mechanical properties of ‘Cocos nucifera Linn’ fibre (CNF) reinforced foamcrete and its performance at elevated temperatures [Master’s thesis]. [Penang]: Universiti Sains Malaysia. http://eprints.usm.my/46610/.

Zhang J, Stang H, Li VC. 2001. Crack bridging model for fibre reinforced concrete under fatigue tension. Int J Fatigue. 23(8):655–670. doi:10.1016/S0142-1123(01)00041-X.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 The Author(s)

Downloads

Download data is not yet available.