The Indonesian Throughflow and its Impact on Biogeochemistry in the Indonesian Seas
AJSTD 37(1)
pdf

Keywords

Indonesian Seas
Indonesian Throughflow
Marine biogeochemistry
Nutrient flux

Abstract

It has been widely known that the Indonesian Throughflow (ITF) is an important inter-ocean connection with unique and complex oceanographic and geographic conditions, as well as a strong relation to both regional and global ocean currents and climate systems. Many studies on characteristics, mechanisms, and impacts of the ITF have been conducted, mainly focusing on the ITF pathways, transport, water mass mixing processes, and their variability in connection with monsoons and climate systems. In this paper, we summarize some of the critical aspects related to ocean conditions within the Indonesian Seas and the Indonesian Throughflow, with the main focus on studies of marine biogeochemistry in a region affected by the ITF. Although the biogeochemical cycle is one of the key research topics that are needed to advance our ocean understanding, studies on marine biogeochemistry within the Indonesian Seas are quite limited due to less observed data compared to the physical parameters. Further studies on biogeochemistry and efforts to conduct in situ and remotely sensed observations in this region are strongly required. Here, we propose several biogeochemical observations correlated to the ITF.

https://doi.org/10.29037/ajstd.596
pdf

References

Ariana L, Ikbal M, Alamsyah P, Nadhiroh IM, Hardiyati R, Laksani CS, Handoyo S, Zulhamdani M. 2017. Foresight riset kelautan 2020–2035 [Marine research foresight 2020–2035]. Jakarta: Research Center for Oceanography, Indonesian Institute of Sciences.

Atmadipoera AS, Khairunnisa Z, Kusuma DW. 2018. Upwelling characteristics during El Nino 2015 in Maluku Sea. IOP Conf Ser: Earth Environ Sci. 176:012018. doi:10.1088/1755-1315/176/1/012018.

Ayers JM, Strutton PG, Coles VJ, Hood RR, Matear RJ. 2014. Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity. Geophys Res Lett. 41(14):5060–5067. doi:10.1002/2014GL060593.

Cadée GC. 1988. Organic carbon in the upper 100 m and downward flux in the Banda Sea; monsoonal differences. Neth J Sea Res. 22(2):109–121. doi:10.1016/0077-7579(88)90015-4.

Feng M, Zhang N, Liu Q, Wijffels S. 2018. The Indonesian throughflow, its variability and centennial change. Geosci Lett. 5(1):3. doi:10.1186/s40562-018-0102-2.

Ffield A, Gordon AL, Ffield A, Gordon AL. 1996. Tidal mixing signatures in the Indonesian Seas. J Phys Oceanogr. 26(9):1924–1937. doi:10.1175/1520-0485(1996)026<1924:TMSITI> 2.0.CO;2.

Godfrey JS. 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. J Geophys Res Oceans. 101(C5):12217–12237. doi:10.1029/95JC03860.

Gordon A. 2005. Oceanography of the Indonesian Seas. Oceanography. 18(4):13–13. doi:10.5670/oceanog.2005.18.

Gordon AL, Huber BA, Metzger EJ, Susanto RD, Hurlburt HE, Adi TR. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophys Res Lett. 39(11). doi:10.1029/2012GL052021.

Gordon AL, Sprintall J, Van Aken HM, Susanto RD, Wijffels S, Molcard R, Ffield A, Pranowo W, Wirasantosa S. 2010. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynam Atmos Ocean. 50(2):115–128. doi:10.1016/j.dynatmoce.2009.12.002.

Gordon AL, Susanto RD, Ffield A. 1999. Throughflow within Makassar Strait. Geophys Res Lett. 26(21):3325–3328. doi:10.1029/1999GL002340.

Hirst AC, Godfrey JS, Hirst AC, Godfrey JS. 1993. The role of Indonesian throughflow in a global ocean GCM. J Phys Oceanogr. 23(6):1057–1086. doi:10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2.

Hofmann E, Allison EH, Aristegui J, Avril B, Bopp L, Bundy A, Campagna C, Chuenpagdee R, Costa D, Drinkwater KF, Gattuso JP, Glaser M, Hall J, Hobday A, Hood R, Liu KK, Liu SM, Maddison L, Maury O, Murphy E, Ogawa H, Oschlies A, Perry I, Piola A, Robinson C, Rynearson T, Sundby S, Svendsen E, Tarling G, van Putten I, Werner F, Xu Y, Yoo S, Zhang J. 2016. IMBeR 2016–2025: science plan and implementation strategy. Bergen: IMBeR International Project Office. http://www.imber.info/resources/images/prosjekter/imber/IMBeR-Science-Plan-and-Implementation-Strategy-2017.pdf.

Horhoruw SM, Atmadipoera AS, Purba M, Purwandana A. 2015. Current structure and spatial variation of Indonesian throughflow in Makassar Strait under Ewin 2013 (Struktur arus dan variasi spasial Arlindo di Selat Makassar dari Ewin 2013). Ilmu Kelautan: Indones J Mar Sci. 20(2):87–100. doi:10.14710/ik.ijms.20.2.87-100.

Iskandar I. 2005. Intraseasonal Kelvin waves along the southern coast of Sumatra and Java. J Geophys Res Oceans. 110(C4):C04013. doi:10.1029/2004JC002508.

Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R. 2007. On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing. Geophys Res Lett. 34(4):L04604. doi:10.1029/2006GL028405.

Koch-Larrouy A, Madec G, Iudicone D, Atmadipoera A, Molcard R. 2008. Physical processes contributing to the water mass transformation of the Indonesian throughflow. Ocean Dyn. 58(3-4):275–288. doi:10.1007/s10236-008-0154-5.

Mayer B, Damm PE, Pohlmann T, Rizal S. 2010. What is driving the ITF? An illumination of the Indonesian throughflow with a numerical nested model system. Dynam Atmos Ocean. 50(2):301–312. doi:10.1016/j.dynatmoce.2010.03.002.

Meirinawati H, Fitriya N. 2018. Pengaruh konsentrasi nutrien terhadap kelimpahan fitoplankton di perairan Halmahera–Maluku [Effect of nutrient concentration on phytoplankton abundance in Halmahera–Maluku waters]. Oseanologi dan Limnologi di Indonesia. 3(3):183. doi:10.14203/oldi.2018.v3i3.129.

Murty SA, Goodkin NF, Wiguna AA, Gordon AL. 2018. Variability in coral-reconstructed sea surface salinity between the northern and southern Lombok Strait linked to East Asian winter monsoon mean state reversals. Paleoceanogr Paleoclimatol. 33(10):1116–1133. doi:10.1029/2018PA003387.

Nagai T, Hibiya T. 2015. Internal tides and associated vertical mixing in the Indonesian Archipelago. J Geophys Res: Oceans. 120(5):3373–3390. doi:10.1002/2014JC010592.

Nugroho D, Koch-Larrouy A, Gaspar P, Lyard F, Reffray G, Tranchant B. 2018. Modelling explicit tides in the Indonesian seas: an important process for surface sea water properties. Mar Pollut Bull. 131:7–18. doi:10.1016/j.marpolbul.2017.06.033.

Potemra J. 2005. Indonesian throughflow transport variability estimated from satellite altimetry. Oceanography. 18(4):98–107. doi:10.5670/oceanog.2005.10.

Prihatiningsih I, Jaya I, Atmadipoera AS, Zuraida R. 2019. Turbulent mixing of water masses in Selayar Slope - Southern Makassar Strait. IOP Conf Ser: Earth Environ Sci. 284:012033. doi:10.1088/1755-1315/284/1/012033.

Qu T, Du Y, Meyers G, Ishida A, Wang D. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett. 32(24):L24609. doi:10.1029/2005GL024698.

Qu T, Du Y, Sasaki H. 2006. South China Sea throughflow: a heat and freshwater conveyor. Geophys Res Lett. 33(23):L23617. doi:10.1029/2006GL028350.

Ratnawati HI, Hidayat R, Bey A, June T. 2016. Upwelling di Laut Banda dan Pesisir Selatan Jawa serta hubungannya dengan ENSO dan IOD [Upwelling in the Banda Sea and South Java Coast and its relationship with ENSO and IOD]. Omni-Akuatika. 12(3):119–130. doi:10.20884/1.oa.2016.12.3.134.

Sasaki H, Kida S, Furue R, Nonaka M, Masumoto Y. 2018. An increase of the Indonesian throughflow by internal tidal mixing in a high?resolution quasi?global ocean simulation. Geophys Res Lett. 45(16):8416–8424. doi:10.1029/2018GL078040.

Schiller A, Godfrey JS, McIntosh PC, Meyers G, Wijffels SE. 1998. Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and Indonesian throughflow in a global ocean general circulation model. J Phys Oceanogr. 28(11):2288–2312. doi:10.1175/1520-0485(1998)028<2288:SNSDAT> 2.0.CO;2.

Song Q, Vecchi GA, Rosati AJ. 2007. The role of the Indonesian throughflow in the Indo–Pacific climate variability in the GFDL coupled climate model. J Clim. 20(11):2434–2451. doi:10.1175/JCLI4133.1.

Sprintall J, Gordon AL, Koch-Larrouy A, Lee T, Potemra JT, Pujiana K, Wijffels SE. 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nat Geosci. 7(7):487–492. doi:10.1038/ngeo2188.

Sprintall J, Gordon AL, Wijffels SE, Feng M, Hu S, Koch-Larrouy A, Phillips H, Nugroho D, Napitu A, Pujiana K, Dwi Susanto R, Sloyan B, Yuan D, Riama NF, Siswanto S, Kuswardani A, Arifin Z, Wahyudi AJ, Zhou H, Nagai T, Ansong JK, Bourdalle-Badié R, Chanut J, Lyard F, Arbic BK, Ramdhani A, Setiawan A. 2019. Detecting change in the Indonesian seas. Front Mar Sci. 6:257. doi:10.3389/fmars.2019.00257.

Sprintall J, Wijffels S, Gordon AL, Ffield A, Molcard R, Susanto RD, Soesilo I, Sopaheluwakan J, Surachman Y, van Aken HM. 2004. INSTANT: a new international array to measure the Indonesian throughflow. EOS. 85(39):369. doi:10.1029/2004EO390002.

Susanto RD, Gordon AL, Zheng Q. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys Res Lett. 28(8):1599–1602. doi:10.1029/2000GL011844.

Talley LD, Sprintall J. 2005. Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the south equatorial current. J Geophys Res Oceans. 110(C10):C10009. doi:10.1029/2004JC002826.

Tang S, Rachman A, Fitria N, Thoha H, Chen B. 2018. Phytoplankton changes during SE monsoonal period in the Lembeh Strait of North Sulawesi, Indonesia, from 2012 to 2015. Acta Oceanol Sin. 37(12):9–17. doi:10.1007/s13131-018-1283-4.

Van Bennekom AJ. 1988. Deep-water transit times in the eastern Indonesian basins, calculated from dissolved silica in deep and interstitial waters. Neth J Sea Res. 22(4):341–354. doi:10.1016/0077-7579(88)90004-X.

Wahyudi AJ, Iskandar MR, Meirinawati H, Afdal, Vimono IB, Afianti NF, Sianturi OR, Wirawati I, Darmayati Y, Helfinalis, Sidabutar T. 2017. Organic matter and nutrient profile of the two-current-regulated-zone in the Southwestern Sumatran Waters (SSW). Mar Res Indones. 42(1):19–33. doi:10.14203/mri.v42i1.124.

Wyrtki K. 1961. Physical oceanography of the Southeast Asian waters. La Jolla: University of California, Scripps Institution of Oceanography. https://escholarship.org/content/qt49n9x3t4/qt49n9x3t4.pdf.

Wyrtki K. 1987. Indonesian through flow and the associated pressure gradient. J Geophys Res Oceans. 92(C12):12941–12946. doi:10.1029/jc092ic12p12941.

Yuan D, Li X, Wang Z, Li Y, Wang J, Yang Y, Hu X, Tan S, Zhou H, Wardana AK, Surinati D, Purwandana A, Azis Ismail MF, Avianto P, Dirhamsyah D, Arifin Z, von Storch JS. 2018. Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. J Phys Oceanogr. 48(8):1803–1813. doi:10.1175/JPO-D-17-0120.1. http://journals.ametsoc.org/doi/10.1175/JPO-D-17-0120.1.

Zijlstra JJ, Baars MA, Tijssen SB, Wetsteyn FJ, Witte JI, Ilahude AG, Hadikusumah. 1990. Monsoonal effects on the hydrography of the upper waters (<300 M) of the eastern Banda Sea and northern Arafura Sea, with special reference to vertical transport processes. Neth J Sea Res. 25(4):431–447. doi:10.1016/0077-7579(90)90068-R.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)

Downloads

Download data is not yet available.