Dose Analysis of Gadolinium Neutron Capture Therapy (GdNCT) on Cancer Using SHIELD-HIT12A
AJSTD 35(3)
pdf

Keywords

157Gd
Cancer
GdNCT
SHIELD-HIT12A

Abstract

This research aimed to determine the dose of radiation received in cancer therapy for each decay of Gadolinium atomic nuclei with isotope 157 (157Gd) in Gadolinium Neutron Capture Therapy using the SHIELD-HIT12A program. Knowing the amount of dose given to cancer tissue should aid in minimizing the damage that could occur in the healthy tissue around the cancer tissue, effectively killing only the cancer cells. The simulation employed in this research used the SHIELD-HIT12A program by providing input on beam.dat, mat.dat, detect.dat, and geo.dat files. The output data from the program comprised the value of recoil energy lost (energy absorbed into the target materials) for each of the 157Gd atomic nuclei, which was then processed by the dose determination equation to determine the dose given by the 157Gd nucleus to soft tissue. Based on the results, the amount of the dose given by each atomic nucleus 157Gd to soft tissue was 5.44 × 1011 Gy/decay.

https://doi.org/10.29037/ajstd.543
pdf

References

Alatas Z, Hidayati S, Akhadi M, Purba M, Purwadi D,Ariyanto S, Winarno H, Rismiyanto, Sofyatiningrum E,Widyastono H, et al. 2014. Buku Pintar Nuklir [NuclearSmart Book]. Jakarta: Pusat Diseminasi dan KemitraanBadan Tenaga Nuklir Nasional.

American Cancer Society. 2015. Cancer facts and figures2015.https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2015.html.

Bassler N, Luehr A, Hansen DC, Sobolevsky N. 2017. SHIELD-HIT12a - User’s Guide.

Capala J, Stenstam BH, Sköld K, Rosenschöld PM, Giusti V,Persson C, Wallin E, Brun A, Franzen L, Carlsson J, et al.2003. Boron neutron capture therapy for glioblastomamultiforme: clinical studies in Sweden. J Neurooncol.62(1-2):135–144. doi:10.1023/A:1023230801571.

Carron N. 2007. An introduction to the passage of energeticparticles through matter. Boca Raton: CRC Press.

Cember H, Johnson TE. 2009. Introduction to healthphysics. New York: McGraw-Hill Medical. OCLC:320018239.

Enger SA, Giusti V, Fortin MA, Lundqvist H, Af RosenschöldPM. 2013. Dosimetry for gadolinium neutron capturetherapy (GdNCT). Radiat Meas. 59:233–240. doi:10.1016/j.radmeas.2013.05.009.

Goorley JT. 2002. A comparison of three gadolinium basedapproaches to cancer therapy [dissertation]. [Mas-sachusetts]: Massachusetts Institute of Technology.

Hosmane NS, Maguire JA, Zhu Y, Takagaki M. 2012. Boronand gadolinium neutron capture therapy for cancertreatment. World Scientific. doi:10.1142/8056.

Kulabdullaev GA, Abdullaeva GA, Kim AA, Rakhmonov TT,Kurmantaev A. 2016. About radiation innatGd for neu-tron capture therapy.J Health Sci. 4(1):35–44.doi:10.17265/2328-7136/2016.01.005.

Rosidah S, Sardjono Y, Sumardi Y. 2017. Dose analyze ofboron neutron capture therapy (BNCT) at skin can-cer melanoma using MCNPX with neutron source fromthermal column of Kartini reactor. Indones J Phys NuclAppl. 2(3):111. doi:10.24246/ijpna.v2i3.111-123.

Sauerwein WAG. 2012. Principles and roots of neutron cap-ture therapy. In: Neutron Capture Therapy. Berlin, Hei-delberg: Springer. p. 1–16. doi:10.1007/978-3-642-31334-9_1.

Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E. 2006. Electron-and positron-emitting ra-diolanthanides for therapy: aspects of dosimetry andproduction. J Nucl Med. 47(5):807–814.212Fasni et al.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.