Beam Shaping Assembly Optimization for Boron Neutron Capture Therapy Facility Based on Cyclotron 30 MeV as Neutron Source
AJSTD 35(3)
pdf

Keywords

BNCT
BSA
MCNPX
Optimization

Abstract

A design of beam shaping assembly (BSA) installed on cyclotron 30 MeV model neutron source for boron neutron capture therapy (BNCT) has been optimized using simulator software of Monte Carlo N-Particle Extended (MCNPX). The Beryllium target with thickness of 0.55 cm is simulated to be bombarded with 30 MeV of proton beam. In this design, the parameter regarding beam characteristics for BNCT treatment has been improved, which is ratio of fast neutron dose and epithermal neutron flux. TiF3 is replaced to 30 cm of 27Al as moderator, and 1.5 cm of 32S is combined with 28 cm of 60Ni as neutron filter. Eventually, this design produces epithermal neutron flux of 2.33 × 109, ratio between fast neutron dose and epithermal neutron flux of 2.12 × 10-13,ratio between gamma dose and epithermal neutron flux of 1.00 × 10-13, ratio between thermal neutron flux and epithermal neutron flux is 0.047, and ration between particle current and total neutron flux is 0.56.

https://doi.org/10.29037/ajstd.536
pdf

References

Benjamin DJ. 2014. The efficacy of surgical treatment of cancer – 20 years later. Med Hypotheses. 82(4): 412–420. doi:10.1016/j.mehy.2014.01.004.

Burlon A, Kreiner A, Valda A, Minsky D. 2004. An optimized neutron-beam shaping assembly for accelerator-based BNCT. Appl Radiat Isot. 61(5):811–815. doi:10.1016/j.apradiso.2004.05.063.

de Boer JJ. 2008. New filter design with Monte Carlo calculation. [BSc Thesis]. [Delft]: TU Delft.

Durisi E, Zanini A, Manfredotti C, Palamara F, Sarotto M, Visca L, Nastasi U. 2007. Design of an epithermal column for BNCT based on D–D fusion neutron facility.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136(5): E359–E386. doi:10.1002/ijc.29210.

Güngör A, Akbay I, Yaşar D, Özdemir T. 2018. Flexible X/Gamma-ray shielding composite material of EPDM rubber with bismuth trioxide: mechanical, thermal investigations and attenuation tests. Prog Nucl Energy. 106:262–269. doi:10.1016/j.pnucene.2018.03.021.

Hassanein A, Hassan M, Mohamed NM, Abou Mandour M.2018. An optimized epithermal BNCT beam design for research reactors. Prog Nucl Energy. 106:455–464. doi:10.1016/j.pnucene.2018.03.018.

Isyan P, Harto AW, Sardjono Y. 2017. Conceptual design of collimator at Boron Neutron Capture Therapy facility with 30 MeV cyclotron and target 9Be as neutron generator using Monte Carlo N-particle extended simulator. Indones J Phys Nucl Appl. 2(1):47.doi:10.24246/ijpna.v2i1.47-53.

Jia CL, Jin L, Chen YH, Urban KW, Wang H. 2018. Atomic-scale evidence for displacive disorder in bismuth zinc niobate pyrochlore. Ultramicroscopy. 192:57–68. doi:10.1016/j.ultramic.2018.05.009.

Karaoglu A, Arce P, Obradors D, Lagares JI, Unak P. 2018.Calculation by GAMOS/Geant4 simulation of cellular energy distributions from alpha and lithium-7 particles created by BNCT. Appl Radiat Isot. 132:206–211. doi:10.1016/j.apradiso.2017.11.021.

Kasesaz Y, Rahmani F, Khalafi H. 2015. Feasibility study of using laser-generated neutron beam for BNCT. Appl Radiat Isot. 103:173–176. doi:10.1016/j.apradiso.2015.06.018.

Kiger WS, Sakamoto S, Harling OK. 1999. Neutronic design of a fission converter-based epithermal neutron beam for neutron capture therapy. Nucl Sci Eng. 131(1):1–22. doi:10.13182/NSE99-A2015.

Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L. 2015. Bystander effects and radiotherapy. Rep Pract Oncol Radiother. 20(1):12–21.doi:10.1016/j.rpor.2014.08.004.

Masoudi SF, Rasouli FS, Ghasemi M. 2017. BNCT of skin tumors using the high-energy D-T neutrons. Appl Radiat Isot. 122:158–163. doi:10.1016/j.apradiso.2017.01.010.

Rasouli FS, Masoudi SF. 2012.Design and optimization of a beam shaping assembly for BNCT based on D–T neutron generator and dose evaluation using a simulated head phantom. Appl Radiat Isot. 70(12):2755–2762. doi:10.1016/j.apradiso.2012.08.008.

Tanaka H, Sakurai Y, Suzuki M, Takata T, Masunaga S, Kinashi Y, Kashino G, Liu Y, Mitsumoto T, Yajima S, Tsutsui H, Takada M, Maruhashi A, Ono K. 2009. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30mev proton cyclotron accelerator. Appl Radiat Isot. 67(7-8): S258–S261. doi:10.1016/j.apradiso.2009.03.096.

Warfi R, Harto AW, Sardjono Y, Widarto W. 2016. Optimization of neutron collimator in the thermal column of Kartini research reactor for in vitro and in vivo trials facility of boron neutron capture therapy using MCNP-X Simulator. Indones J Phys Nucl Appl. 1(1):54. doi:10.24246/ijpna.v1i1.54-62.

[WHO] World Health Organization. 2014. WHO - cancer country profiles Indonesia 2014. [accessed 2017 Feb 21].

https://www.iccp-portal.org/who-cancer-country-profiles-indonesia-2014.

[WHO] World Health Organization. 2017. The top 10 causes of death. [accessed 2017 Feb 21].http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

Xoubi N. 2016. Calculation of the power and absolute flux of a source driven subcritical assembly using Monte Carlo MCNP code. Ann Nucl Energy. 97:96–101. doi:10.1016/j.anucene.2016.07.009.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.