Influence of Temperature on the Performance of Photovoltaic Polycrystalline Silicon Module in the Bruneian Climate
PDF

Keywords

Polycrystalline modules
PV modules
Thermal performance
rating of PV modules.

Abstract

The influence of working temperature for  a  polysilicon module has been investigated in Brunei Darussalam for a period of two years.  The rise in temperature produces thermal agitation which not only increases the dark current but also enhances the losses of free carriers in a polycrystalline module. The efficiency and the output power decreases with an increase in the working temperature. A maximum decline in the output power of 97% has been measured under a dominated diffused radiation environment. The temperature coefficients have been obtained and equations are developed to evaluate the change in the rating of module at any working temperature with reference to their values at STC. 

https://doi.org/10.29037/ajstd.252
PDF

References

Bücher, K. Do we need site-dependent and climate-dependent module rating? In: Proceedings of 23rd IEEE photovoltaic specialists conference, Louisville, KY, 1996, p. 1056-62.

Anderson, D. Bishop J. and Dunlio, E Energy rating of photovoltaic modules, In: Proceedings of the 16th European photovoltaic solar energy conference, Glasgow, 2000, p. 2087-91.

Malik, A. Q. and Salmi Jan Bin Haji Damit. Outdoor testing of single silicon solar cells. Renewable Energy 2003; 28: 1433-1445.

Malik, A. Q. and Mohamad Fauzi Bin Hj Metali. The working characteristics of photovoltaic modules in natural environment. In: Proceedings of the Renewable energy for sustainable development in the Asia pacific region, Western Australia, 2007, p. 228-234.

Malik, A. Q. Mohamad Fauzi Bin Hj Metali, Lim Chee Ming and Tan Kha Sheng, In: Proceedings of World Renewable Energy Congress (WREN) 2009-Asia, p. 294-297.

Malik, A. Q., Chong Chew Hah, Chan Siang Khwang and Lim Chee Ming. Characterization of multicrystalline solar cells, AJSTD 2006; 23 (1& 2): 97-106.

Minemoto, T, Nagae, S. and Takakura, H. Impact of spectral irradiance distribution and temperature on the outdoor performance of amorphous Si photovoltaic modules, Solar Energy Materials and Solar Cells 2007, 91, 919-923.

Almonacid, F., Rus, C., Hontoria, L., Fuentes, M. and Nofuentes, G. Characterization of Si-crystalline PV modules by artificial neural networks, Renewable Energy 2009: 24: 941-949.

Ikisawa, M., Nakano, A. Igari, S. and Terashima. Outdoor exposure tests of photovoltaic modules in Japan and overseas. Renewable Energy 1998; 14, (1-4): 95-100.

Radziemska, E. Effect of temperature on dark current characteristics of silicon solar cells and diodes. International Journal of Energy Research 2005; 30, (2): 127-134.

Radziemska, E. The effect of temperature on the power drop in crystalline solar cells, Renewable Energy 2003, 28, 1-12.

Radziemska, E. Effect of temperature on dark current characteristics of silicon solar cells and diodes, International Journal of Energy research 2005, 30, 2, 127-134.

Skoplaki, E., Boudouvis, A. G. and Palyvos, J. A. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Material & Solar Cells 2008; 92: 1393-1402.

Olchowik, J. M., Gulkowski, S., Cieŝlak, K. J., Banaś, Jóźwik, I., Szymczuk, D., Zabielski, K., Mucha, J., Zdrojewska, M., Adamczyk, J. and Tomaszewski, R. Influence of temperature on the efficiency of monocrystalline silicon solar cells in the South-eastern Poland conditions, Materials Science-Poland 2006; 24(4):1127-1132.

Fanncy, A. H., Davis, M. W., Dougherty, B. P., King, D. L., Boyson, W. E. and Kratochvil, J. A. Comparison of photovoltaic module performance measurements, Journal of Solar Energy Engineering, Transactions of the ASME 2006, 128, 2, 152-159.

Williams, S. P., Gottschalg, R. and Infield, D. G. Effects on photovoltaic solar module performance in the UK climate, International Journal of Ambient Energy 2004, 25, 1, 39-46.

Siefer, G., Abbott, P., Baur, C., Schlegl, T. and Bett, A. W. Determination of the temperature coefficients of various III-V solar cells, In: Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain 2005.

Emery, K. A. and Osterwald, C. R. Solar cell efficiency measurements. Solar Cells 1986; 17:253-274.

Emery, K. The rating of photovoltaic performance. IEEE Transactions of Electron Devices 1999; 46, (10): 1928-1931.

Kazmerski, L. L. Photovoltaics: A review of cell and module technologies, Renewable and Sustainable Energy Rev. 1997, 1, 71-170.

Green, M. A. Solar Cells, Prentice_Hall, Englewood Cliffs, USA; 1982.

Lorenzo, E. Solar Electricity, Progensa, Sevilla, Spain, 1994.

Lasnier, F. and Ang, A. G. Photovoltaic Engineering Handbook, Adam Hilger, New York, USA; 1990.

Scott, B. J., Mayer, E. L. and Leich, A. W. R. Temperature dependence of crystalline silicon photovoltaic modules, South African Journal of Science 2000; 96: pp. 198-200.

Meyer, E. E. Dyk, E. E. V. Degradation of silicon photovoltaic modules. In: Proceedings of the 16th EPVSEC, Glasgow, UK, 2000.

Mayer, E. L. and Mapuranga, B. The effect of temperature on the performance of photovoltaic modules at regulated voltage. In: Proceedings of 15th International Photovoltaic Science & Engineering Conference (PVSEC-15), Shanghai, China, 2005, p. 1256-1257.

Copyright (c) 2017 A. Q. Malik, Lim Chee Ming, Tan Kha Sheng, M. Blundell

Downloads

Download data is not yet available.