magnetic anisotropy


We have investigated magneto-optic properties of ultrathin Fe films grown on Pt(111) surfaces by using the in situ surface magneto-optic Kerr effect (SMOKE) and X-ray photoelectron spectroscopy (XPS). SMOKE measurements show that the Fe layers are not ferromagnetic when the film is thinner than approximately 4.5 MLs (monolayers), but the in-plane magnetization is present for a 4.1 ML Fe film on Pt(111) annealed at 550 K. Upon post-annealing at 770 K, a 9.2 ML Fe film does not show any Kerr signal, while a 6.3 ML Fe film has the in-plane Kerr signal with increased coercivity. The oxidation and reduction of ultrathin Fe films have also been studied by using XPS. Upon an oxygen exposure of 300 Langmuir at a film temperature of 873 K, the Fe layers were mostly oxidized as Fe3O4. When the Fe films were exposed to the same amount of oxygen at room temperature, a partial oxidation as Fe3O4 was observed for a 3 ML Fe film, while there was no oxidation for a 2 ML Fe film. On heating the 873 K oxidized films, Fe3O4O was reduced to FeO, and even the decomposition was observed. Underlying reasons for these chemical changes of Fe and iron-oxide films are discussed.


Simopoulos, A, Devlin, E., Kostikas, A., Jankowski, A., Croft, M., and Tsakalakos, T. (1996), Phys. Rev., vol. B 54, p. 9931.

Katayama, T., Suzuki, Y., Nishihara, Y., Sugimoto, T., and Hashimoto, M. (1991), J. Appl. Phys., vol. 69, p. 5858.

Antel, W.J.Jr., Schwickert, M.M., Lin, T., O'Brien, W.L., and Harp, G.R. (1999), Phys. Rev., vol. B 60, p. 12933.

Koide, T., Shidara, T., Yamaguchi, K., Fujimori, A., Fuku- tani, H., Nakajima, N., Sugimoto, T., Katayama, T., and Suzuki, Y. (1996), Phys. Rev., vol. B 53, p. 8219.

Choi, J.-H., Nahm, T.-U., Kim, W., Kim, W., Chung, J., Kim, J.-Y., Koh, H., and Oh, S.-J. (2001), Surf. Sci., vol. 495, p. 173.

Nahm, T.-U., Kim, W., and Oh, S.-J. (2005), J. Korean Phys. Soc., vol. 46, p. S125.

Schwarz, K.-H. (1986), J. Phys. F: Met. Phys., vol. 16, p. L211.

Zhang, Z. and Satpathy, S. (1991), Phys. Rev.,vol. B 44, p. 13319.

Kim, H.-J., Park, J.-H., and Vescovo, E. (2000), Phys. Rev., vol. B 61, p. 15284.

Chambers, S.A., Thevuthasan, S., and Joyce, S. (2000), Surf. Sci., vol. 450, p. L273.

Lazarov, K., Weinert, M., Chambers, S.A., and Gajdardziska-Josifovska, M. (2005), Phys. Rev., vol. B 72, p. 195401.

Weiss, W., Barbieri, A., Van Hove, M.A., and Somorjai, G.A. (1993), Phys. Rev. Lett., vol. 71, p. 1848.

Dedkov, Yu.S., Riidige, U., and Giintherodt, G. (2002), Phys. Rev., vol. B 65, p. 064417.

Fonin, M., Dedkov, Yu.S., Mayer, J., Riidiger, U., and Giintherodt, G. (2003), Phys. Rev., vol. B 68, p. 045414.

Camarero, J., de Miguel, J.J., Miranda, R., and Her-nando, A. (2000), J. Phys.: Condens. Matter, vol. 12, p. 7713.

Brown, G., Kraczek, B., Janotti, A., Schulthess, T.C., Stocks, G.M., and Johnson, D.D. (2003), Phys. Rev., vol. B 68, p. 052405.

Nahm, T.-U., Noh, H.-J., Choi, B., Park, J.-S., Oh, S.-J., and Cho, E.-J. (2003), J. Phys.:Condens. Matter, vol. 15, p. 3181.

Seah, M.P. and Dench, W. A. (1979), Surf. Interf. Anal., vol. 1, p. 1.

Ley, L. and Cardona, M. (eds.) (1979), Photoemission in Solids II (Springer Verlag, Berlin), p. 351.

Yeh, J.J. and Lindau, I. (1979), At. Data Nucl. Data Tables, vol. 32, p. 1.

Song, S.-H., Park, J.-S., Nahm, T.-U., Noh, H.-J., Choi, B.-H., and Oh, S.-J. (2004), J. Korean Phys. Soc., vol. 45, p. 51.

Schedel-Niedrig, Th., Weiss, W., and Schlogl, R. (1995), Phys. Rev., vol. B 52, p. 17449.

Byun, B.-S., Kim, M.-S., and Nahm, T.-U. (2006), J. Korean Phys. Soc., vol. 49, p. 1006.

Kubaschewski, O. and Alcock, C.B. (1979), Metallurgical Thermochemistry (Pergamon Press, Oxford), p. 284.

Nahm, T.-U. and Gomer, R. (1997), Surf. Sci., vol. 373, p. 237.

Ref. [24], p. 304.


Download data is not yet available.